Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Front Big Data ; 6: 1038283, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2304954

RESUMEN

Understanding sociodemographic factors behind COVID-19 severity relates to significant methodological difficulties, such as differences in testing policies and epidemics phase, as well as a large number of predictors that can potentially contribute to severity. To account for these difficulties, we assemble 115 predictors for more than 3,000 US counties and employ a well-defined COVID-19 severity measure derived from epidemiological dynamics modeling. We then use a number of advanced feature selection techniques from machine learning to determine which of these predictors significantly impact the disease severity. We obtain a surprisingly simple result, where only two variables are clearly and robustly selected-population density and proportion of African Americans. Possible causes behind this result are discussed. We argue that the approach may be useful whenever significant determinants of disease progression over diverse geographic regions should be selected from a large number of potentially important factors.

2.
Sci Rep ; 12(1): 17711, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: covidwho-2087296

RESUMEN

Global Health Security Index (GHSI) categories are formulated to assess the capacity of world countries to deal with infectious disease risks. Thus, higher values of these indices were expected to translate to lower COVID-19 severity. However, it turned out to be the opposite, surprisingly suggesting that higher estimated country preparedness to epidemics may lead to higher disease mortality. To address this puzzle, we: (i) use a model-derived measure of COVID-19 severity; (ii) employ a range of statistical learning approaches, including non-parametric machine learning methods; (iii) consider the overall excess mortality, in addition to official COVID-19 fatality counts. Our results suggest that the puzzle is, to a large extent, an artifact of oversimplified data analysis and a consequence of misclassified COVID-19 deaths, combined with the higher median age of the population and earlier epidemics onset in countries with high GHSI scores.


Asunto(s)
COVID-19 , Epidemias , Humanos , COVID-19/epidemiología , Salud Global , Países Desarrollados
3.
Environ Res ; 216(Pt 1): 114446, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2061125

RESUMEN

The emergence of a new virus variant is generally recognized by its usually sudden and rapid spread (outburst) in a certain world region. Due to the near-exponential rate of initial expansion, the new strain may not be detected at its true geographical origin but in the area with the most favorable conditions leading to the fastest exponential growth. Therefore, it is crucial to understand better the factors that promote such outbursts, which we address in the example of analyzing global Omicron transmissibility during its global emergence/outburst in November 2021-February 2022. As predictors, we assemble a number of potentially relevant factors: vaccinations (both full and boosters), different measures of population mobility (provided by Google), estimated stringency of measures, the prevalence of chronic diseases, population age, the timing of the outburst, and several other socio-demographic variables. As a proxy for natural immunity (prevalence of prior infections in population), we use cumulative numbers of COVID-19 deaths. As a response variable (transmissibility measure), we use the estimated effective reproduction number (Re) averaged in the vicinity of the outburst maxima. To select significant predictors of Re, we use machine learning regressions that employ feature selection, including methods based on ensembles of decision trees (Random Forest and Gradient Boosting). We identify the young population, earlier infection onset, higher mobility, low natural immunity, and low booster prevalence as likely direct risk factors. Interestingly, we find that all these risk factors were significantly higher for Africa, though curiously somewhat lower in Southern African countries (where the outburst emerged) compared to other African countries. Therefore, while the risk factors related to the virus transmissibility clearly promote the outburst of a new virus variant, specific regions/countries where the outburst actually happens may be related to less evident factors, possibly random in nature.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Factores de Riesgo , Número Básico de Reproducción , Prevalencia , Geografía
4.
One Health ; 13: 100355, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1536973

RESUMEN

Understanding variations in the severity of infectious diseases is essential for planning proper mitigation strategies. Determinants of COVID-19 clinical severity are commonly assessed by transverse or longitudinal studies of the fatality counts. However, the fatality counts depend both on disease clinical severity and transmissibility, as more infected also lead to more deaths. Instead, we use epidemiological modeling to propose a disease severity measure that accounts for the underlying disease dynamics. The measure corresponds to the ratio of population-averaged mortality and recovery rates (m/r), is independent of the disease transmission dynamics (i.e., the basic reproduction number), and has a direct mechanistic interpretation. We use this measure to assess demographic, medical, meteorological, and environmental factors associated with the disease severity. For this, we employ an ecological regression study design and analyze different US states during the first disease outbreak. Principal Component Analysis, followed by univariate, and multivariate analyses based on machine learning techniques, is used for selecting important predictors. The usefulness of the introduced severity measure and the validity of the approach are confirmed by the fact that, without using prior knowledge from clinical studies, we recover the main significant predictors known to influence disease severity, in particular age, chronic diseases, and racial factors. Additionally, we identify long-term pollution exposure and population density as not widely recognized (though for the pollution previously hypothesized) significant predictors. The proposed measure is applicable for inferring severity determinants not only of COVID-19 but also of other infectious diseases, and the obtained results may aid a better understanding of the present and future epidemics. Our holistic, systematic investigation of disease severity at the human-environment intersection by epidemiological dynamical modeling and machine learning ecological regressions is aligned with the One Health approach. The obtained results emphasize a syndemic nature of COVID-19 risks.

5.
Geohealth ; 5(9): e2021GH000432, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-1467049

RESUMEN

Identifying the main environmental drivers of SARS-CoV-2 transmissibility in the population is crucial for understanding current and potential future outbursts of COVID-19 and other infectious diseases. To address this problem, we concentrate on the basic reproduction number R 0, which is not sensitive to testing coverage and represents transmissibility in an absence of social distancing and in a completely susceptible population. While many variables may potentially influence R 0, a high correlation between these variables may obscure the result interpretation. Consequently, we combine Principal Component Analysis with feature selection methods from several regression-based approaches to identify the main demographic and meteorological drivers behind R 0. We robustly obtain that country's wealth/development (GDP per capita or Human Development Index) is the most important R 0 predictor at the global level, probably being a good proxy for the overall contact frequency in a population. This main effect is modulated by built-up area per capita (crowdedness in indoor space), onset of infection (likely related to increased awareness of infection risks), net migration, unhealthy living lifestyle/conditions including pollution, seasonality, and possibly BCG vaccination prevalence. Also, we argue that several variables that significantly correlate with transmissibility do not directly influence R 0 or affect it differently than suggested by naïve analysis.

6.
Environ Res ; 201: 111526, 2021 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1437449

RESUMEN

Many studies have proposed a relationship between COVID-19 transmissibility and ambient pollution levels. However, a major limitation in establishing such associations is to adequately account for complex disease dynamics, influenced by e.g. significant differences in control measures and testing policies. Another difficulty is appropriately controlling the effects of other potentially important factors, due to both their mutual correlations and a limited dataset. To overcome these difficulties, we will here use the basic reproduction number (R0) that we estimate for USA states using non-linear dynamics methods. To account for a large number of predictors (many of which are mutually strongly correlated), combined with a limited dataset, we employ machine-learning methods. Specifically, to reduce dimensionality without complicating the variable interpretation, we employ Principal Component Analysis on subsets of mutually related (and correlated) predictors. Methods that allow feature (predictor) selection, and ranking their importance, are then used, including both linear regressions with regularization and feature selection (Lasso and Elastic Net) and non-parametric methods based on ensembles of weak-learners (Random Forest and Gradient Boost). Through these substantially different approaches, we robustly obtain that PM2.5 is a major predictor of R0 in USA states, with corrections from factors such as other pollutants, prosperity measures, population density, chronic disease levels, and possibly racial composition. As a rough magnitude estimate, we obtain that a relative change in R0, with variations in pollution levels observed in the USA, is typically ~30%, which further underscores the importance of pollution in COVID-19 transmissibility.


Asunto(s)
Contaminantes Atmosféricos , COVID-19 , Contaminantes Atmosféricos/análisis , Número Básico de Reproducción , Humanos , Material Particulado/análisis , SARS-CoV-2 , Estados Unidos
7.
Global Challenges ; 5(5):2170051, 2021.
Artículo en Inglés | Wiley | ID: covidwho-1222616

RESUMEN

In article 2000101 Magdalena Djordjevic, Marko Djordjevic and co-workers report widespread dynamical signatures in COVID-19 confirmed case counts. They show that these signatures provide important quantitative information for understanding the disease spread and for constraining or inferring key infection progression parameters. This can lead to a more fundamental understanding of infection progression under strong control measures applicable to COVID-19 and other infectious diseases.

8.
Adv Protein Chem Struct Biol ; 127: 291-314, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1212968

RESUMEN

A number of models in mathematical epidemiology have been developed to account for control measures such as vaccination or quarantine. However, COVID-19 has brought unprecedented social distancing measures, with a challenge on how to include these in a manner that can explain the data but avoid overfitting in parameter inference. We here develop a simple time-dependent model, where social distancing effects are introduced analogous to coarse-grained models of gene expression control in systems biology. We apply our approach to understand drastic differences in COVID-19 infection and fatality counts, observed between Hubei (Wuhan) and other Mainland China provinces. We find that these unintuitive data may be explained through an interplay of differences in transmissibility, effective protection, and detection efficiencies between Hubei and other provinces. More generally, our results demonstrate that regional differences may drastically shape infection outbursts. The obtained results demonstrate the applicability of our developed method to extract key infection parameters directly from publically available data so that it can be globally applied to outbreaks of COVID-19 in a number of countries. Overall, we show that applications of uncommon strategies, such as methods and approaches from molecular systems biology research to mathematical epidemiology, may significantly advance our understanding of COVID-19 and other infectious diseases.


Asunto(s)
COVID-19/mortalidad , COVID-19/transmisión , Simulación por Computador , Modelos Biológicos , SARS-CoV-2 , China/epidemiología , Femenino , Humanos , Masculino
9.
Glob Chall ; 5(5): 2000101, 2021 May.
Artículo en Inglés | MEDLINE | ID: covidwho-1107637

RESUMEN

Widespread growth signatures in COVID-19 confirmed case counts are reported, with sharp transitions between three distinct dynamical regimes (exponential, superlinear, and sublinear). Through analytical and numerical analysis, a novel framework is developed that exploits information in these signatures. An approach well known to physics is applied, where one looks for common dynamical features, independently from differences in other factors. These features and associated scaling laws are used as a powerful tool to pinpoint regions where analytical derivations are effective, get an insight into qualitative changes of the disease progression, and infer the key infection parameters. The developed framework for joint analytical and numerical analysis of empirically observed COVID-19 growth patterns can lead to a fundamental understanding of infection progression under strong control measures, applicable to outbursts of both COVID-19 and other infectious diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA